58 research outputs found

    Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition

    Get PDF
    The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate – in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring

    The Role of Stimulus Salience and Attentional Capture Across the Neural Hierarchy in a Stop-Signal Task

    Get PDF
    Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    Connectivity-based parcellation of the human frontal polar cortex

    Get PDF
    The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity

    Neural mediators of changes of mind about perceptual decisions

    Get PDF
    Changing one's mind on the basis of new evidence is a hallmark of cognitive flexibility. To revise our confidence in a previous decision, we should use new evidence to update beliefs about choice accuracy. How this process unfolds in the human brain, however, remains unknown. Here we manipulated whether additional sensory evidence supports or negates a previous motion direction discrimination judgment while recording markers of neural activity in the human brain using fMRI. A signature of post-decision evidence (change in log-odds correct) was selectively observed in the activity of posterior medial frontal cortex. In contrast, distinct activity profiles in anterior prefrontal cortex mediated the impact of post-decision evidence on subjective confidence, independently of changes in decision value. Together our findings reveal candidate neural mediators of post-decisional changes of mind in the human brain and indicate possible targets for ameliorating deficits in cognitive flexibility

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex.

    No full text
    The human ability to infer the thoughts and beliefs of others, often referred to as "theory of mind," as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor
    • 

    corecore